Scientists Find New Way to Destroy 'Forever Chemicals' in Water Using Hydrogen and UV Light
John Smith
Staff Writer
Nuestro compromiso con la precisión y la objetividad
Ocemida se compromete a brindar información confiable e imparcial. Nuestro equipo editorial, compuesto por editores experimentados y expertos médicos, revisa minuciosamente cada artículo y guía para garantizar que el contenido sea preciso, esté actualizado y libre de sesgos.
Proceso riguroso de verificación de datos
Para mantener los más altos estándares de precisión, adherimos a las siguientes pautas de verificación de datos:
Fuentes confiables: solo citamos fuentes confiables, como revistas revisadas por pares, informes gubernamentales, asociaciones académicas y médicas y entrevistas con profesionales de la salud acreditados.
Basado en evidencia: todas las afirmaciones y datos científicos están respaldados por al menos una fuente creíble. Cada artículo incluye una bibliografía completa con citas completas y enlaces a las fuentes originales.
Enlaces internos: si bien podemos incluir enlaces internos a otras páginas relevantes de Ocemida para una mejor navegación, estos enlaces nunca se utilizan como fuentes principales de información científica.
Revisión de expertos: Un miembro de nuestro equipo de expertos médicos y científicos proporciona una revisión final del contenido y las fuentes citadas para todos los artículos y reseñas de productos relacionados con temas médicos y de salud.
Al seguir estos rigurosos estándares, Ocemida se esfuerza por proporcionar a los lectores contenido confiable e informativo.
Comparte con un amigo
Puntos clave
PFAS are persistent synthetic chemicals that contaminate water and pose health risks
Hydrated electrons generated by VUV light can effectively break down PFAS
Adding hydrogen gas enhances hydrated electron production and PFAS degradation
Chloride and sulfate in water further boost the degradation process
This technique could potentially help treat PFAS-contaminated water sources
You may have heard of PFAS, short for poly- and per-fluoroalkyl substances. These synthetic chemicals, used in everything from non-stick cookware to firefighting foam, are sometimes called "forever chemicals" because they are extremely difficult to break down naturally. PFAS contamination of drinking water is a growing concern, as these chemicals have been linked to various health problems.
But a new study published in the journal Journal of Hazardous Materials Letters offers a promising solution: using hydrogen gas and vacuum ultraviolet (VUV) light to break down PFAS molecules.
How does it work?
The researchers developed what they call a "hydrogen-polarized VUV system". Here's a simplified explanation of how it works:
- VUV light, which has very short wavelengths, is shone into water
- The VUV photons have enough energy to ionize water molecules (H2O) into various reactive species, including hydrated electrons (eaq−)
- Hydrated electrons are very effective at breaking the strong carbon-fluorine bonds in PFAS
- Adding hydrogen gas to the water has two key benefits:
- It removes dissolved oxygen, which would otherwise "scavenge" the hydrated electrons
- It converts hydroxyl radicals (another byproduct of water ionization) into more hydrated electrons
The result was a dramatic increase in PFAS degradation. For example, the hydrogen-polarized VUV system broke down 95% of perfluorooctanoic acid (PFOA), a common type of PFAS, compared to just 10% in a regular VUV system. The optimum pH was found to be around 10.3.
What's more, the presence of chloride and sulfate ions, which are commonly found in water, actually enhanced the PFAS degradation by generating even more hydrated electrons when exposed to VUV light.
Potential applications and open questions
This hydrogen-polarized VUV system could potentially be used to treat PFAS-contaminated drinking water or wastewater. The researchers note that the energy efficiency could be improved by developing light sources that emit more of their energy in the VUV range.
One intriguing question is whether a similar process could happen inside the human body when we drink hydrogen-rich water and are exposed to sunlight (which contains some UVB and UVC radiation). More research would be needed to determine if this has any meaningful effect on PFAS levels in the body.
References
For more info on PFAS, check out the EPA's website. You can read the full research paper here.
Tabla de contenido